42 research outputs found

    Zero-watermarking Algorithm for Medical Volume Data Based on Difference Hashing

    Get PDF
    In order to protect the copyright of medical volume data, a new zerowatermarking algorithm for medical volume data is presented based on Legendre chaotic neural network and difference hashing in three-dimensional discrete cosine transform domain. It organically combines the Legendre chaotic neural network, three-dimensional discrete cosine transform and difference hashing, and becomes a kind of robust zero-watermarking algorithm. Firstly, a new kind of Legendre chaotic neural network is used to generate chaotic sequences, which causes the original watermarking image scrambling. Secondly, it uses three-dimensional discrete cosine transform to the original medical volume data, and the perception of the low frequency coefficient invariance in the three-dimensional discrete cosine transform domain is utilized to extract the first 4*5*4 coefficient in order to form characteristic matrix (16*5). Then, the difference hashing algorithm is used to extract a robust perceptual hashing value which is a binary sequence, with the length being 64-bit. Finally, the hashing value serves as the image features to construct the robust zero-watermarking. The results show that the algorithm can resist the attack, with good robustness and high security

    A robust multi-watermarking algorithm for medical images based on DTCWT-DCT and Henon map

    Get PDF
    To resolve the contradiction between existing watermarking methods—which are not compatible with the watermark’s ability to resist geometric attacks—and robustness, a robust multi-watermarking algorithm suitable for medical images is proposed. First, the visual feature vector of the medical image was obtained by dual-tree complex wavelet transform and discrete cosine transform (DTCWT-DCT) to perform multi-watermark embedding and extraction. Then, the multi-watermark was pre-processed using the Henon map chaotic encryption technology to strengthen the security of watermark information, and combined with the concept of zero watermark to make the watermark able to resist both conventional and geometric attacks. Experimental results show that the proposed algorithm can effectively extract watermark information; it implements zero watermarking and blind extraction. Compared with existing watermark technology, it has good performance in terms of its robustness and resistance to geometric attacks and conventional attacks, especially in geometric attacks

    Medical Image Watermarking in Sub-block Three-dimensional Discrete Cosine Transform Domain

    No full text
    Digital watermarking can be applied to protection of medical images privacy, hiding of patient's diagnosis information and so on. In order to improve the ability of resisting geometric attacks, a new watermarking algorithm for medical volume data in sub-block three-dimensional discrete cosine transform domain is presented. The original watermarking image is scrambled by a Chebyshev chaotic neural network so as to improve watermarking security. Sub-block three-dimensional discrete cosine transform and perceptual hashing are used to construct zero-watermarking. In this way it does not produce medical image distortion and gives the algorithm the ability to resist geometric attacks. Experimental results show that the algorithm has good security, and it has good robustness to various geometric attacks
    corecore